Minggu, 03 Juni 2012

Definisi NaOH



Natrium hidroksida
(NaOH)


 (NaOH), juga dikenal sebagai soda kaustik atau sodium hidroksida, adalah sejenis basa logam kaustik. Natrium Hidroksida terbentuk dari oksida basa Natrium Oksida dilarutkan dalam air. Natrium hidroksida membentuk larutan alkalin yang kuat ketika dilarutkan ke dalam air. Ia digunakan di berbagai macam bidang industri, kebanyakan digunakan sebagai basa dalam proses produksi bubur kayu dan kertas, tekstil, air minum, sabun dan deterjen. Natrium hidroksida adalah basa yang paling umum digunakan dalam laboratorium kimia.
Natrium hidroksida murni berbentuk putih padat dan tersedia dalam bentuk pelet, serpihan, butiran ataupun larutan jenuh 50%. Ia bersifat lembap cair dan secara spontan menyerap karbon dioksida dari udara bebas. Ia sangat larut dalam air dan akan melepaskan panas ketika dilarutkan. Ia juga larut dalam etanol dan metanol, walaupun kelarutan NaOH dalam kedua cairan ini lebih kecil daripada kelarutan KOH. Ia tidak larut dalam dietil eter dan pelarut non-polar lainnya. Larutan natrium hidroksida akan meninggalkan noda kuning pada kain dan kertas

Aluminium (atau aluminum,alumunium,almunium,alminium) ialah unsur kimia. Lambang aluminium ialah Al, dan nomor atomnya 13. Aluminium ialah logam paling berlimpah.

Aluminium bukan merupakan jenis logam berat, namun merupakan elemen yang berjumlah sekitar 8% dari permukaan bumi dan paling berlimpah ketiga. Aluminium terdapat dalam penggunaan aditif makanan, antasida, buffered aspirin, astringents, semprotan hidung, antiperspirant, air minum, knalpot mobil, asap tembakau, penggunaan aluminium foil, peralatan masak, kaleng, keramik , dan kembang api.

Aluminium merupakan konduktor listrik yang baik. Terang dan kuat. Merupakan konduktor yang baik juga buat panas. Dapat ditempa menjadi lembaran, ditarik menjadi kawat dan diekstrusi menjadi batangan dengan bermacam-macam penampang. Tahan korosi.

Aluminium digunakan dalam banyak hal. Kebanyakan darinya digunakan dalam kabel bertegangan tinggi. Juga secara luas digunakan dalam bingkai jendela dan badan pesawat terbang. Ditemukan di rumah sebagai panci, botol minuman ringan, tutup botol susu dsb. Aluminium juga digunakan untuk melapisi lampu mobil dan compact disks.

Aluminium oksida adalah sebuah senyawa kimia dari aluminium dan oksigen, dengan rumus kimia Al2O3. Nama mineralnya adalah alumina, dan dalam bidang pertambangan, keramik dan teknik material senyawa ini lebih banyak disebut dengan nama alumina.
[sunting]
Sifat-sifat

Aluminium oksida adalah insulator (penghambat) panas dan listrik yang baik. Umumnya Al2O3 terdapat dalam bentuk kristalin yang disebut corundum atau α-aluminum oksida. Al2O3 dipakai sebagai bahan abrasif dan sebagai komponen dalam alat pemotong, karena sifat kekerasannya.

Aluminium oksida berperan penting dalam ketahanan logam aluminium terhadap perkaratan dengan udara. Logam aluminium sebenarnya amat mudah bereaksi dengan oksigen di udara. Aluminium bereaksi dengan oksigen membentuk aluminium oksida, yang terbentuk sebagai lapisan tipis yang dengan cepat menutupi permukaan aluminium. Lapisan ini melindungi logam aluminium dari oksidasi lebih lanjut. Ketebalan lapisan ini dapat ditingkatkan melalui proses anodisasi. Beberapa alloy (paduan logam), seperti perunggu aluminium, memanfaatkan sifat ini dengan menambahkan aluminium pada alloy untuk meningkatkan ketahanan terhadap korosi.

Al2O3 yang dihasilkan melalui anodisasi bersifat amorf, namun beberapa proses oksidasi seperti plasma electrolytic oxydation menghasilkan sebagian besar Al2O3 dalam bentuk kristalin, yang meningkatkan kekerasannya.
[sunting]
Proses fabrikasi

Secara alami, aluminium oksida terdapat dalam bentuk kristal corundum. Batu mulia rubi dan sapphire tersusun atas corundum dengan warna-warna khas yang disebabkan kadar ketidakmurnian dalam struktur corundum.

Aluminium oksida, atau alumina, merupakan komponen utama dalam bauksit bijih aluminium yang utama. Pabrik alumina terbesar di dunia adalah Alcoa, Alcan, dan Rusal. Perusahaan yang memiliki spesialisasi dalam produksi dari aluminium oksida dan aluminium hidroksida misalnya adalah Alcan dan Almatis. Bijih bauksit terdiri dari Al2O3, Fe2O3, and SiO2 yang tidak murni. Campuran ini dimurnikan terlebih dahulu melalui Proses Bayer:

Al2O3 + 3H2O + 2NaOH + panas → 2NaAl(OH)4

Fe2O3 tidak larut dalam basa yang dihasilkan, sehingga bisa dipisahkan melalui penyaringan. SiO2 larut dalam bentuk silikat Si(OH)62-. Ketika cairan yang dihasilkan didinginkan, terjadi endapan Al(OH)3, sedangkan silikat masih larut dalam cairan tersebut. Al(OH)3 yang dihasilkan kemudian dipanaskan

2Al(OH)3 + panas → Al2O3 + 3H2O

Al2O3 yang terbentuk adalah alumina.

Pada 1961, perusahaan General Electric mengembangkan Lucalox, alumina transparan yang digunakan dalam lampu natrium. Pada Agustus 2006, ilmuwan Amerika Serikat yang bekerja untuk 3M berhasil mengembangkan teknik untuk membuat alloy dari aluminium oksida dan unsur-unsur lantanida, untuk memproduksi kaca yang kuat, yang disebut alumina transparan.
[sunting]
Penggunaan

Setiap tahunnya, 65 juta ton alumina digunakan, lebih dari 90%-nya digunakan dalam produksi logam aluminium. Aluminium hidroksida digunakan dalam pembuatan bahan kimia pengelolaan air seperti aluminium sulfat, polialuminium klorida, dan natrium aluminat. Berton-ton alumina juga digunakan dalam pembuatan zeolit, pelapisan pigmen titania dan pemadam api.

Aluminium oksida memiliki kekerasan 9 dalam skala Mohr. Hal ini menyebabkannya banyak digunakan sebagai abrasif untuk menggantikan intan yang jauh lebih mahal. Beberapa jenis ampelas, dan pembersih CD/DVD juga menggunakan aluminium oksida.

Definisi
Kalsium hipoklorit adalah padatan putih yang siap didekomposisi di dalam air untuk kemudian melepaskan oksigen dan klorin. Kalsium hipoklorit memiliki aroma klorin yang kuat. Senyawa ini tidak terdapat di lingkungan secara bebas.

Penggunaan
Kalsium hipoklorit utamanya digunakan sebagai agen pemutih atau disinfektan. Senyawa ini adalah komponen yang digunakan dalam pemutih komersial, larutan pembersih, dan disinfektan untuk air minum, sistem pemurnian air, dan kolam renang.


Interaksi Kalsium Hipoklorit terhadap Lingkungan
  • Di Udara: ketika berada di udara, kalsium hipoklorit akan terdegradasi oleh sinar matahari dan senyawa-senyawa lain yang terdapat di udara
  • Di air dan Tanah: kalsium hipoklorit berpisah menjadi ion kalsium (Ca2+) dan hipoklorit (ClO-). Ion ini dapat bereaksi dengan substansi-substansi lain yang terdapat di air
  • Kalsium hipoklorit tidak terakumulasi di dalam rantai makanan

Jalur Pajanan Kalsium Hipoklorit kepada Manusia
Pertama, manusia dapat terpajan kalsium hipoklorit dalam level kecil ketika menggunakan disinfektan seperti pemutih rumah tangga. Kedua, Manusia bisa terpajan ketika ia berenang di kolam yang menggunakan bahan kimia ini untuk membunuh bakteri. Ketiga, meminum air dari suplai air minum publik yang menggunakan bahan kimia ini untuk membunuh bakteri juga bisa menjadi jalur pajanan. Selain itu, para pekerja yang dipekerjakan di pekerjaan dimana senyawa ini digunakan sebagai pemutih kertas dan tekstil dapat menjadi subyek pajanan kalsium hipoklorit dalam level sedikit lebih tinggi.

Pengaruh Kalsium Hipoklorit terhadap Kesehatan
Efek toksik dari kalsium hipoklorit utamanya bergantung pada sifat korosif hipoklorit. Jika sejumlah kecil dari pemutih (3-6% hipoklorit) tertelan (ingesti), efeknya adalah iritasi pada sistem gastrointestinal. Jika konsentrasi pemutih yang tertelan lebih besar, misalnya hipoklorit 10% atau lebih, efek yang akan dirasakan adalah iritasi korosif hebat pada mulut, tenggorokan, esofagus, dan lambung dengan pendarahan, perforasi (perlubangan), dan pada akhirnya kematian. Jaringan parut permanen dan penyempitan esofagus dapat muncul pada orang-orang yang dapat bertahan hidup setelah mengalami intoksikasi (mabuk hipoklorit) hebat.
gas klorin yang terlepas dari larutan hipoklorit terhirup (inhalasi), efek yang akan muncul adalah iritasi pada rongga hidung, sakit pada tenggorokan, dan batuk. Kontak dengan larutan hipoklorit kuat dengan kulit akan menyebabkan kulit melepuh, nyeri bakar, dan inflamasi. Kontak mata dengan larutan pemutih konsentrasi rendah menyebabkan iritasi ringan, tetapi tidak permanen. Larutan dengan konsentrasi yang tinggi dapat menyebabkan luka mata parah. Pajanan hipoklorit dalam level rendah pada jangka waktu lama dapat menyebabkan iritasi kulit. Belum diketahui apakah pajanan klorin memiliki efek pada kemampuan reproduksi. International Agency for research on Cancer (IARC) telah menetapkan bahwa garam hipoklorit tidak diklasifikasikan bersifat karsinogenik terhadap manusia.
Anak-anak mungkin terpajan kalsium hipoklorit dengan jalur yang sama dengan orang dewasa. Tidak diketahui apakah anak-anak berbeda dengan orang dewasa terkait dengan suseptibilitasnya terhadap kalsium hipoklorit. Secara umum, anak-anak dapat lebih berisiko terhadap bahan korosif daripada orang dewasa. Belum diketahui juga apakah kalsium hipoklorit dapat menyebabkan cacat lahir atau efek pada perkembangan tubuh lainnya.

Cara Mengukur Pajanan Kalsium Hipoklorit pada Tubuh
Uji spesifik untuk mengukur kehadiran kalsium ataupun klorin pada tubuh dengan menggunakan sampel darah dan urin secara umum dapat dikatakan tidak berguna. Jika terdapat pajanan parah, analisis darah dan urin serta uji lainnya dapat menunjukkan apakah kerusakan telah terjadi pada paru-paru dan traktus gastrointestinal. Beberapa tes dapat dilakukan di klinik. Akan tetapi, ada beberapa uji yang membutuhkan fasilitas rumah sakit.

Nilai Ambang Batas
Pada Makanan, Food and Drug Administrastion (FDA) menetapkan ambang batas klorin, yang tergambarkan oleh natrium hipoklorit atau kalsium hipoklorit, yaitu tidak boleh melebihi berturut-turut 0.0082 pounds (sama dengan 3.72 gram) dan 0.0036 pounds (sama dengan 1.633 gram) klorin per pounds makanan kering (1 pounds sama dengan 453.59 gram). Dengan kata lain, dalam 100 gram makanan, kadar klorin (yang digambarkan dengan natrium hipoklorit atau kalsium hipoklorit) tidak boleh melebihi berturut-turut 0.82 gram dan 0.36 gram. Seperti diketahui, hal-hal yang memengaruhi efek pajanan suatu bahan kimia terhadap metabolisme tubuh manusia dipengaruhi oleh dosis, lama pajanan, jalur pajanan, ciri khas dan perilaku manusia, serta keberadaan senyawa kimia lainnya . Disini FDA melakukan perhitungan dengan menggunakan statistik manusia secara umum.
Jika kita menggunakan standar ini untuk manusia di Indonesia, mungkin standar ini masih belum aman. Hal ini disebabkan oleh perbedaan antropometri manusia Indonesia dengan manusia Eropa,Amerika, Afrika, atau manusia dari belahan dunia lainnya. Untuk mendapatkan angka yang lebih dapat melindungi kesehatan manusia di Indonesia, maka diperlukan penelitian lebih lanjut.[1]

  
Kesadahan air adalah kandunganmineral-mineral tertentu di dalam air, umumnya ion kalsium (Ca) dan magnesium (Mg) dalam bentuk garam karbonat. Air sadah atau air keras adalah air yang memiliki kadar mineral yang tinggi, sedangkan air lunak adalah air dengan kadar mineral yang rendah. Selain ion kalsium dan magnesium, penyebab kesadahan juga bisa merupakan ion logam lain maupun garam-garam bikarbonat dan sulfat. Metode paling sederhana untuk menentukan kesadahan air adalah dengan sabun. Dalam air lunak, sabun akan menghasilkan busa yang banyak. Pada air sadah, sabun tidak akan menghasilkan busa atau menghasilkan sedikit sekali busa. Cara yang lebih kompleks adalah melalui titrasi. Kesadahan air total dinyatakan dalam satuan ppm berat per volume (w/v) dari CaCO3.
    Air sadah tidak begitu berbahaya untuk diminum, namun dapat menyebabkan beberapa masalah. Air sadah dapat menyebabkan pengendapan mineral, yang menyumbat saluran pipa dan keran. Air sadah juga menyebabkan pemborosan sabun di rumah tangga, dan air sadah yang bercampur sabun dapat membentuk gumpalan scum yang sukar dihilangkan. Dalam industri, kesadahan air yang digunakan diawasi dengan ketat untuk mencegah kerugian. Untuk menghilangkan kesadahan biasanya digunakan berbagai zat kimia, ataupun dengan menggunakan resin penukar ion
    Air sadah digolongkan menjadi dua jenis, berdasarkan jenis anion yang diikat oleh kation (Ca2+ atau Mg2+), yaitu :
 a. Air sadah sementara
    Air sadah sementara adalah air sadah yang mengandung ion bikarbonat (HCO3-),    atau boleh jadi air tersebut mengandung senyawa kalsium bikarbonat (Ca(HCO3)2) dan atau magnesium bikarbonat (Mg(HCO3)2). Air yang mengandung ion atau senyawa-senyawa tersebut disebut air sadah sementara karena kesadahannya dapat dihilangkan dengan pemanasan air, sehingga air tersebut terbebas dari ion Ca2+ dan atau Mg2+. Dengan jalan pemanasan senyawa-senyawa tersebut akan mengendap pada dasar ketel. Reaksi yang terjadi adalah : Ca(HCO3)2 (aq) –> CaCO3 (s) + H2O (l) + CO2 (g)
 b. Air sadah tetap
    Air sadah tetap adalah air sadah yang mengadung anion selain ion bikarbonat, misalnya dapat berupa ion Cl-, NO3- dan SO42-. Berarti senyawa yang terlarut boleh jadi berupa kalsium klorida (CaCl2), kalsium nitrat (Ca(NO3)2), kalsium sulfat (CaSO4), magnesium klorida (MgCl2), magnesium nitrat (Mg(NO3)2), dan magnesium sulfat (MgSO4). Air yang mengandung senyawa-senyawa tersebut disebut air sadah tetap, karena kesadahannya tidak bisa dihilangkan hanya dengan cara pemanasan. Untuk membebaskan air tersebut dari kesadahan, harus dilakukan dengan cara kimia, yaitu dengan mereaksikan air tersebut dengan zat-zat kimia tertentu. Pereaksi yang digunakan adalah larutan karbonat, yaitu Na2CO3 (aq) atau K2CO3 (aq). Penambahan larutan karbonat dimaksudkan untuk mengendapkan ion Ca2+ dan atau Mg2+.

CaCl2 (aq) + Na2CO3 (aq) –> CaCO3 (s) + 2NaCl (aq) Mg(NO3)2 (aq) + K2CO3 (aq) –> MgCO3 (s) + 2KNO3 (aq) Dengan terbentuknya endapan CaCO3 atau MgCO3 berarti air tersebut telah terbebas dari ion Ca2+ atau Mg2+ atau dengan kata lain air tersebut telah terbebas dari kesadahan.
    Pada industri yang menggunakan ketel uap, air yang digunakan harus terbebas dari kesadahan. Proses penghilangan kesadahan air yang sering dilakukan pada industri-industri adalah melalui penyaringan dengan menggunakan zat-zat sebagai berikut :
  Resin pengikat kation dan anion. Resin adalah zat polimer alami ataupun sintetik yang salah satu fungsinya adalah dapat mengikat kation dan anion tertentu. Secara teknis, air sadah dilewatkan melalui suatu wadah yang berisi resin pengikat kation dan anion, sehingga diharapkan kation Ca2+ dan Mg2+ dapat diikat resin. Dengan demikian, air tersebut akan terbebas dari kesadahan.
    Zeolit memiliki rumus kimia Na2(Al2SiO3O10).2H2O atau K2(Al2SiO3O10).2H2O. zeolit mempunyai struktur tiga dimensi yang memiliki pori-pori yang dapat dikewati air. Ion Ca2+ dan Mg2+ akan ditukar dengan ion Na+ dan K+ dari zeolit, sehingga air tersebut terbebas dari kesadahan.
    Cara paling mudah untuk mengetahui air yang selalu anda gunakan adalah air sadar atau bukan dengan menggunakan sabun. Ketika air yang anda gunakan adalah air sadah, maka sabun akan sukar berbiuh, kalaupun berbuih, berbuihnya sedikit. Kemudian untuk mengetahui jenis kesadahan air adalah dengan pemanasan. Jika ternyata setelah dilakukan pemanasan, sabun tetap sukar berbuih, berarti air yang anda gunakan adalah air sadah tetap.
    Untuk menghilangkan kesadahan sementara ataupun kesadahan tetap pada air yang anda gunakan di rumah dapat dilakukan dengan menggunakan zeolit. Anda cukup menyediakan tong yang dapat menampung zeolit. Pada dasar tong sudah dibuat keran. Air yang akan anda gunakan dilewatkan pada zeolit terlebih dahulu. Air yang telah dilewatkan pada zeolit dapat anda gunakan untuk keperluan rumah tangga, spserti mencuci, mandi dan keperluan masak.

--180.246.194.82 13 November 2011 00.22 (UTC)--180.246.194.82 13 November 2011 00.22 (UTC)--180.246.194.82 13 November 2011 00.22 (UTC) Zeolit memiliki kapasitas untuk menukar ion, artinya anda tidak dapat menggunakan zeolit yang sama selamanya. Sehingga pada rentang waktu tertentu anda harus menggantinya.

Ikatan kimia adalah sebuah proses fisika yang bertanggung jawab dalam interaksi gaya tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Penjelasan mengenai gaya tarik menarik ini sangatlah rumit dan dijelaskan oleh elektrodinamika kuantum. Dalam prakteknya, para kimiawan biasanya bergantung pada teori kuantum atau penjelasan kualitatif yang kurang kaku (namun lebih mudah untuk dijelaskan) dalam menjelaskan ikatan kimia. Secara umum, ikatan kimia yang kuat diasosiasikan dengan transfer elektron antara dua atom yang berpartisipasi. Ikatan kimia menjaga molekul-molekul, kristal, dan gas-gas diatomik untuk tetap bersama. Selain itu ikatan kimia juga menentukan struktur suatu zat.
Kekuatan ikatan-ikatan kimia sangatlah bervariasi. Pada umumnya, ikatan kovalen dan ikatan ion dianggap sebagai ikatan "kuat", sedangkan ikatan hidrogen dan ikatan van der Waals dianggap sebagai ikatan "lemah". Hal yang perlu diperhatikan adalah bahwa ikatan "lemah" yang paling kuat dapat lebih kuat daripada ikatan "kuat" yang paling lemah.

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png
Contoh model titik Lewis yang menggambarkan ikatan kimia anatara karbon C, hidrogen H, dan oksigen O. Penggambaran titik lewis adalah salah satu dari usaha awal kimiawan dalam menjelaskan ikatan kimia dan masih digunakan secara luas sampai sekarang.

Tinjauan
Elektron yang mengelilingi inti atom bermuatan negatif dan proton yang terdapat dalam inti atom bermuatan positif, mengingat muatan yang berlawanan akan saling tarik menarik, maka dua atom yang berdekatan satu sama lainnya akan membentuk ikatan.
Dalam gambaran yang paling sederhana dari ikatan non-polar atau ikatan kovalen, satu atau lebih elektron, biasanya berpasangan, ditarik menuju sebuah wilayah di antara dua inti atom. Gaya ini dapat mengatasi gaya tolak menolak antara dua inti atom yang positif, sehingga atraksi ini menjaga kedua atom untuk tetap bersama, walaupun keduanya masih akan tetap bergetar dalam keadaan kesetimbangan. Ringkasnya, ikatan kovalen melibatkan elektron-elektron yang dikongsi dan dua atau lebih inti atom yang bermuatan positif secara bersamaan menarik elektron-elektron bermuatan negatif yang dikongsi.
Dalam gambaran ikatan ion yang disederhanakan, inti atom yang bermuatan positif secara dominan melebihi muatan positif inti atom lainnya, sehingga secara efektif menyebabkan satu atom mentransfer elektronnya ke atom yang lain. Hal ini menyebabkan satu atom bermuatan positif dan yang lainnya bermuatan negatif secara keseluruhan. Ikatan ini dihasilkan dari atraksi elektrostatik di antara atom-atom dan atom-atom tersebut menjadi ion-ion yang bermuatan.
Semua bentuk ikatan dapat dijelaskan dengan teori kuantum, namun dalam prakteknya, kaidah-kaidah yang disederhanakan mengijinkan para kimiawan untuk memprediksikan kekuatan, arah, dan polaritas sebuah ikatan. Kaidah oktet (Bahasa Inggris: octet rule) dan teori VSEPR adalah dua contoh kaidah yang disederhanakan tersebut. Ada pula teori-teori yang lebih canggih, yaitu teori ikatan valens yang meliputi hibridisasi orbital dan resonans, dan metode orbital molekul kombinasi linear orbital atom (Bahasa Inggris: Linear combination of atomic orbitals molecular orbital method) yang meliputi teori medan ligan. Elektrostatika digunakan untuk menjelaskan polaritas ikatan dan efek-efeknya terhadap zat-zat kimia.

Sejarah
Spekulasi awal dari sifat-sifat ikatan kimia yang berawal dari abad ke-12 mengganggap spesi kimia tertentu disatukan oleh sejenis afinitas kimia. Pada tahun 1704, Isaac Newton menggarisbesarkan teori ikatan atomnya pada "Query 31" buku Opticksnya dengan mengatakan atom-atom disatukan satu sama lain oleh "gaya" tertentu.
Pada tahun 1819, setelah penemuan tumpukan volta, Jöns Jakob Berzelius mengembangkan sebuah teori kombinasi kimia yang menekankan sifat-sifat elektrogenativitas dan elektropositif dari atom-atom yang bergabung. Pada pertengahan abad ke-19 Edward Frankland, F.A. Kekule, A.S. Couper, A.M. Butlerov, dan Hermann Kolbe, beranjak pada teori radikal, mengembangkan teori valensi yang pada awalnya disebut "kekuatan penggabung". Teori ini mengatakan sebuah senyawa tergabung berdasarkan atraksi kutub positif dan kutub negatif. Pada tahun 1916, kimiawan Gilbert N. Lewis mengembangkan konsep ikatan elektron berpasangan. Konsep ini mengatakan dua atom dapat berkongsi satu sampai enam elektron, membentuk ikatan elektron tunggal, ikatan tunggal, ikatan rangkap dua, atau ikatan rangkap tiga.

Dalam kata-kata Lewis sendiri:
An electron may form a part of the shell of two different atoms and cannot be said to belong to either one exclusively.
Pada tahun yang sama, Walther Kossel juga mengajukan sebuah teori yang mirip dengan teori Lewis, namun model teorinya mengasumsikan transfer elektron yang penuh antara atom-atom. Teori ini merupakan model ikatan polar. Baik Lewis dan Kossel membangun model ikatan mereka berdasarkan kaidah Abegg (1904).
Pada tahun 1927, untuk pertama kalinya penjelasan matematika kuantum yang penuh atas ikatan kimia yang sederhana berhasil diturunkan oleh fisikawan Denmark Oyvind Burrau.[1] Hasil kerja ini menunjukkan bahwa pendekatan kuantum terhadap ikatan kimia dapat secara mendasar dan kuantitatif tepat. Namun metode ini tidak mampu dikembangkan lebih jauh untuk menjelaskan molekul yang memiliki lebih dari satu elektron. Pendekatan yang lebih praktis namun kurang kuantitatif dikembangkan pada tahun yang sama oleh Walter Heitler and Fritz London. Metode Heitler-London menjadi dasar dari teori ikatan valensi. Pada tahun 1929, metode orbital molekul kombinasi linear orbital atom (Bahasa Inggris: linear combination of atomic orbitals molecular orbital method), disingkat LCAO, diperkenalkan oleh Sir John Lennard-Jones yang bertujuan menurunkan struktur elektronik dari molekul F2 (fluorin) dan O2 (oksigen) berdasarkan prinsip-prinsip dasar kuantum. Teori orbital molekul ini mewakilkan ikatan kovalen sebagai orbital yang dibentuk oleh orbital-orbital atom mekanika kuantum Schrödinger yang telah dihipotesiskan untuk atom berelektron tunggal. Persamaan ikatan elektron pada multielektron tidak dapat diselesaikan secara analitik, namun dapat dilakukan pendekatan yang memberikan hasil dan prediksi yang secara kualitatif cukup baik. Kebanyakan perhitungan kuantitatif pada kimia kuantum modern menggunakan baik teori ikatan valensi maupun teori orbital molekul sebagai titik awal, walaupun pendekatan ketiga, teori fungsional rapatan (Bahasa Inggris: density functional theory), mulai mendapatkan perhatian yang lebih akhir-akhir ini.
Pada tahun 1935, H. H. James dan A. S. Coolidge melakukan perhitungan pada molekul dihidrogen.Berbeda dengan perhitungan-perhitungan sebelumnya yang hanya menggunakan fungsi-fungsi jarak antara elektron dengan inti atom, mereka juga menggunakan fungsi yang secara eksplisit memperhitungkan jarak antara dua elektron.[2] Dengan 13 parameter yang dapat diatur, mereka mendapatkan hasil yang sangat mendekati hasil yang didapatkan secara eksperimen dalam hal energi disosiasi. Perluasan selanjutnya menggunakan 54 parameter dan memberikan hasil yang sangat sesuai denganhasil eksperimen. Perhitungan ini meyakinkan komunitas sains bahwa teori kuantum dapat memberikan hasil yang sesuai dengan hasil eksperimen. Namun pendekatan ini tidak dapat memberikan gambaran fisik seperti yang terdapat pada teori ikatan valensi dan teori orbital molekul. Selain itu, ia juga sangat sulit diperluas untuk perhitungan molekul-molekul yang lebih besar.

Teori ikatan valensi
Pada tahun 1927, teori ikatan valensi dikembangkan atas dasar argumen bahwa sebuah ikatan kimia terbentuk ketika dua valensi elektron bekerja dan menjaga dua inti atom bersama oleh karena efek penurunan energi sistem. Pada tahun 1931, beranjak dari teori ini, kimawan Linus Pauling mempublikasikan jurnal ilmiah yang dianggap sebagai jurnal paling penting dalam sejarah kimia: "On the Nature of the Chemical Bond". Dalam jurnal ini, berdasarkan hasil kerja Lewis dan teori valensi ikatan Heitler dan London, dia mewakilkan enam aturan pada ikatan elektron berpasangan:
1. Ikatan elektron berpasangan terbentuk melalui interaksi elektron tak-berpasangan pada masing-masing atom.
2. Spin-spin elektron haruslah saling berlawanan.
3. Seketika dipasangkan, dua elektron tidak bisa berpartisipasi lagi pada ikatan lainnya.
4. Pertukaran elektron pada ikatan hanya melibatkan satu persamaan gelombang untuk setiap atom.
5. Elektron-elektron yang tersedia pada aras energi yang paling rendah akan membentuk ikatan-ikatan yang paling kuat.
6. Dari dua orbital pada sebuah atom, salah satu yang dapat bertumpang tindih paling banyaklah yang akan membentuk ikatan paling kuat, dan ikatan ini akan cenderung berada pada arah orbital yang terkonsentrasi.
Buku teks tahun 1939 Pauling: On the Nature of Chemical Bond menjadi apa yang banyak orang sebut sebagai "kitab suci" kimia modern. Buku ini membantu kimiawan eksperimental untuk memahami dampak teori kuantum pada kimia. Namun, edisi 1959 selanjutnya gagal untuk mengalamatkan masalah yang lebih mudah dimengerti menggunakan teori orbital molekul. Dampak dari teori valensi ini berkurang sekitar tahun 1960-an dan 1970-an ketika popularitas teori orbital molekul meningkat dan diimplementasikan pada beberapa progam komputer yang besar. Sejak tahun 1980-an, masalah implementasi teori ikatan valensi yang lebih sulit pada program-program komputer telah hampir dipecahkan dan teori ini beranjak bangkit kembali.

Teori orbital molekul
Teori orbital molekul (Bahasa Inggris: Molecular orbital tehory), disingkat MO, menggunakan kombinasi linear orbital-orbital atom untuk membentuk orbital-orbital molekul yang menrangkumi seluruh molekul. Semuanya ini seringkali dibagi menjadi orbital ikat, orbital antiikat, dan orbital bukan-ikatan. Orbital molekul hanyalah sebuah orbital Schrödinger yang melibatkan beberapa inti atom. Jika orbital ini merupakan tipe orbital yang elektron-elektronnya memiliki kebolehjadian lebih tinggi berada di antara dua inti daripada di lokasi lainnya, maka orbital ini adalah orbital ikat dan akan cenderung menjaga kedua inti bersama. Jika elektron-elektron cenderung berada di orbital molekul yang berada di lokasi lainnya, maka orbital ini adalah orbital antiikat dan akan melemahkan ikatan. Elektron-elektron yang berada pada orbital bukan-ikatan cenderung berada pada orbital yang paling dalam (hampir sama dengan orbital atom), dan diasosiasikan secara keseluruhan pada satu inti. Elektron-elektron ini tidak menguatkan maupun melemahkan kekuatan ikatan.

Perbandingan antara teori ikatan valensi dan teori orbital molekul
Pada beberapa bidang, teori ikatan valensi lebih baik daripada teori orbital molekul. Ketika diaplikasikan pada molekul berelektron dua, H2, teori ikatan valensi, bahkan dengan pendekatan Heitler-London yang paling sederhana, memberikan pendekatan energi ikatan yang lebih dekat dan representasi yang lebih akurat pada tingkah laku elektron ketika ikatan kimia terbentuk dan terputus. Sebaliknya, teori orbital molekul memprediksikan bahwa molekul hidrogen akan berdisosiasi menjadi superposisi linear dari hidrogen atom dan ion hidrogen positif dan negatif. Prediksi ini tidak sesuai dengan gambaran fisik. Hal ini secara sebagian menjelaskan mengapa kurva energi total terhadap jarak antar atom pada metode ikatan valensi berada di atas kurva yang menggunakan metode orbital molekul. Situasi ini terjadi pada semua molekul diatomik homonuklir dan tampak dengan jelas pada F2 ketika energi minimum pada kurva yang menggunakan teori orbital molekul masih lebih tinggi dari energi dua atom F.
Konsep hibridisasi sangatlah berguna dan variabilitas pada ikatan di kebanyakan senyawa organik sangatlah rendah, menyebabkan teori ini masih menjadi bagian yang tak terpisahkan dari kimia organik. Namun, hasil kerja Friedrich Hund, Robert Mulliken, dan Gerhard Herzberg menunjukkan bahwa teori orbital molekul memberikan deskripsi yang lebih tepat pada spektrokopi, ionisasi, dan sifat-sifat magnetik molekul. Kekurangan teori ikatan valensi menjadi lebih jelas pada molekul yang berhipervalensi (contohnya PF5) ketika molekul ini dijelaskan tanpa menggunakan orbital-orbital d yang sangat krusial dalam hibridisasi ikatan yang diajukan oleh Pauling. Logam kompleks dan senyawa yang kurang elektron (seperti diborana) dijelaskan dengan sangat baik oleh teori orbital molekul, walaupun penjelasan yang menggunakan teori ikatan valensi juga telah dibuat.
Pada tahun 1930, dua metode ini saling bersaing sampai disadari bahwa keduanya hanyalah merupakan pendekatan pada teori yang lebih baik. Jika kita mengambil struktur ikatan valensi yang sederhana dan menggabungkan semua struktur kovalen dan ion yang dimungkinkan pada sekelompok orbital atom, kita mendapatkan apa yang disebut sebagai fungsi gelombang interaksi konfigurasi penuh. Jika kita mengambil deskripsi orbital molekul sederhana pada keadaan dasar dan mengkombinasikan fungsi tersebut dengan fungsi-fungsi yang mendeskripsikan keseluruhan kemungkinan keadaan tereksitasi yang menggunakan orbital tak terisi dari sekelompok orbital atom yang sama, kita juga mendapatkan fungsi gelombang interaksi konfigurasi penuh. Terlihatlah bahwa pendekatan orbital molekul yang sederhana terlalu menitikberatkan pada struktur ion, sedangkan pendekatan teori valensi ikatan yang sederhana terlalu sedikit menitikberatkan pada struktur ion. Dapat kita katakan bahwa pendekatan orbital molekul terlalu ter-delokalisasi, sedangkan pendekatan ikatan valensi terlalu ter-lokalisasi.
Sekarang kedua pendekatan tersebut dianggap sebagai saling memenuhi, masing-masing memberikan pandangannya sendiri terhadap masalah-masalah pada ikatan kimia. Perhitungan modern pada kimia kuantum biasanya dimulai dari (namun pada akhirnya menjauh) pendekatan orbital molekul daripada pendekatan ikatan valensi. Ini bukanlah karena pendekatan orbital molekul lebih akurat dari pendekatan teori ikatan valensi, melainkan karena pendekatan orbital molekul lebih memudahkan untuk diubah menjadi perhitungan numeris. Namun program-progam ikatan valensi yang lebih baik juga tersedia.

Ikatan dalam rumus kimia
Bentuk atom-atom dan molekul-molekul yang 3 dimensi sangatlah menyulitkan dalam menggunakan teknik tunggal yang mengindikasikan orbital-orbital dan ikatan-ikatan. Pada rumus molekul, ikatan kimia (orbital yang berikatan) diindikasikan menggunakan beberapa metode yang bebeda tergantung pada tipe diskusi. Kadang-kadang kesemuaannya dihiraukan. Sebagai contoh, pada kimia organik, kimiawan biasanya hanya peduli pada gugus fungsi molekul. Oleh karena itu, rumus molekul etanol dapat ditulis secara konformasi, 3-dimensi, 2-dimensi penuh (tanpa indikasi arah ikatan 3-dimensi), 2-dimensi yang disingkat (CH3–CH2–OH), memisahkan gugus fungsi dari bagian molekul lainnnya (C2H5OH), atau hanya dengan konstituen atomnya saja (C2H6O). Kadangkala, bahkan kelopak valensi elektron non-ikatan (dengan pendekatan arah yang digambarkan secara 2-dimensi) juga ditandai. Beberapa kimiawan juga menandai orbital-orbital atom, sebagai contoh anion etena−4 yang dihipotesiskan (\/C=C/\ −4) mengindikasikan kemungkinan pembentukan ikatan.sehingga terjadi ikatan rangkap dua antara banci2 dgn germo.wkwkwk iya kan gan...

Ikatan kuat kimia
Panjang ikat dalam pm
dan
energi ikat dalam kJ/mol.
Panjang ikat dapat dikonversikan menjadi Å
dengan pembagian dengan 100 (1 Å = 100 pm).
Data diambil dari
[1].
Ikatan
Panjang
(pm)
Energi
(kJ/mol)
H — Hidrogen
H–H
74
436
H–C
109
413
H–N
101
391
H–O
96
366
H–F
92
568
H–Cl
127
432
H–Br
141
366
C — Karbon
C–H
109
413
C–C
154
348
C=C
134
614
C≡C
120
839
C–N
147
308
C–O
143
360
C–F
135
488
C–Cl
177
330
C–Br
194
288
C–I
214
216
C–S
182
272
N — Nitrogen
N–H
101
391
N–C
147
308
N–N
145
170
N≡N
110
945
O — Oksigen
O–H
96
366
O–C
143
360
O–O
148
145
O=O
121
498
F, Cl, Br, I — Halogen
F–H
92
568
F–F
142
158
F–C
135
488
Cl–H
127
432
Cl–C
177
330
Cl–Cl
199
243
Br–H
141
366
Br–C
194
288
Br–Br
228
193
I–H
161
298
I–C
214
216
I–I
267
151
S — Belerang
C–S
182
272
Ikatan-ikatan berikut adalah ikatan intramolekul yang mengikat atom-atom bersama menjadi molekul. Dalam pandangan yang sederhana dan terlokalisasikan, jumlah elektron yang berpartisipasi dalam suatu ikatan biasanya merupakan perkalian dari dua, empat, atau enam. Jumlah yang berangka genap umumnya dijumpai karena elektron akan memiliki keadaan energi yang lebih rendah jika berpasangan. Teori-teori ikatan yang lebih canggih menunjukkan bahwa kekuatan ikatan tidaklah selalu berupa angka bulat dan tergantung pada distribusi elektron pada setiap atom yang terlibat dalam sebuah ikatan. Sebagai contohnya, karbon-karbon dalam senyawa benzena dihubungkan satu sama lain oleh ikatan 1.5 dan dua atom dalam nitrogen monoksida NO dihubungkan oleh ikatan 2,5. Keberadaan ikatan rangkap empat juga diketahui dengan baik. Jenis-jenis ikatan kuat bergantung pada perbedaan elektronegativitas dan distribusi orbital elektron yang tertarik pada suatu atom yang terlibat dalam ikatan. Semakin besar perbedaan elektronegativitasnya, semakin besar elektron-elektron tersebut tertarik pada atom yang berikat dan semakin bersifat ion pula ikatan tersebut. Semakin kecil perbedaan elektronegativitasnya, semakin bersifat kovalen ikatan tersebut.
Ikatan kovalen
Ikatan kovalen adalah ikatan yang umumnya sering dijumpai, yaitu ikatan yang perbedaan elektronegativitas (negatif dan positif) di antara atom-atom yang berikat sangatlah kecil atau hampir tidak ada. Ikatan-ikatan yang terdapat pada kebanyakan senyawa organik dapat dikatakan sebagai ikatan kovalen. Lihat pula ikatan sigma dan ikatan pi untuk penjelasan LCAO terhadap jenis ikatan ini.
Ikatan polar kovalen
Ikatan polar kovalen merupakan ikatan yang sifat-sifatnya berada di antara ikatan kovalen dan ikatan ion.
Ikatan ion

Ikatan ion merupakan sejenis interaksi elektrostatik antara dua atom yang memiliki perbedaan elektronegativitas yang besar. Tidaklah terdapat nilai-nilai yang pasti yang membedakan ikatan ion dan ikatan kovalen, namun perbedaan elektronegativitas yang lebih besar dari 2,0 bisanya disebut ikatan ion, sedangkan perbedaan yang lebih kecil dari 1,5 biasanya disebut ikatan kovalen.[3] Ikatan ion menghasilkan ion-ion positif dan negatif yang berpisah. Muatan-muatan ion ini umumnya berkisar antara -3 e sampai dengan +3e.

Ikatan kovalen koordinat
Ikatan kovalen koordinat, kadangkala disebut sebagai ikatan datif, adalah sejenis ikatan kovalen yang keseluruhan elektron-elektron ikatannya hanya berasal dari salah satu atom, penderma pasangan elektron, ataupun basa Lewis. Konsep ini mulai ditinggalkan oleh para kimiawan seiring dengan berkembangnya teori orbital molekul. Contoh ikatan kovalen koordinat terjadi pada nitron dan ammonia borana. Susunan ikatan ini berbeda dengan ikatan ion pada perbedaan elektronegativitasnya yang kecil, sehingga menghasilkan ikatan yang kovalen. Ikatan ini biasanya ditandai dengan tanda panah. Ujung panah ini menunjuk pada akseptor elektron atau asam Lewis dan ekor panah menunjuk pada penderma elektron atau basa Lewis

Ikatan pisang
Ikatan pisang adalah sejenis ikatan yang terdapat pada molekul-molekul yang mengalami terikan ataupun yang mendapat rintangan sterik, sehingga orbital-orbital ikatan tersebut dipaksa membentuk struktur ikatan yang mirip dengan pisang. Ikatan pisang biasanya lebih rentan mengalami reaksi daripada ikatan-ikatan normal lainnya.

Ikatan 3c-2e dan 3c-4e
Dalam ikatan tiga-pusat dua-elektron, tiga atom saling berbagi dua elektron. Ikatan sejenis ini terjadi pada senyawa yang kekurangan elektron seperti pada diborana. Setiap ikatan mengandung sepasang elektron yang menghubungkan atom boron satu sama lainnya dalam bentuk pisang dengan sebuah proton (inti atom hidrogen) di tengah-tengah ikatan, dan berbagi elektron dengan kedua atom boron. Terdapat pula Ikatan tiga-pusat empat-elektron yang menjelaskan ikatan pada molekul hipervalen.
Ikatan tiga elektron dan satu elektron
Ikatan-ikatan dengan satu atau tiga elektron dapat ditemukan pada spesi radikal yang memiliki jumlah elektron gasal (ganjil). Contoh paling sederhana dari ikatan satu elektron dapat ditemukan pada kation molekul hidrogen H2+. Ikatan satu elektron seringkali memiliki energi ikat yang setengah kali dari ikatan dua elektron, sehingga ikatan ini disebut pula "ikatan setengah". Namun terdapat pengecualian pada kasus dilitium. Ikatan dilitium satu elektron, Li2+, lebih kuat dari ikatan dilitium dua elektron Li2. Pengecualian ini dapat dijelaskan dengan hibridisasi dan efek kelopak dalam. [4]
Contoh sederhana dari ikatan tiga elektron dapat ditemukan pada kation dimer helium, He2+, dan dapat pula dianggap sebagai "ikatan setengah" karena menurut teori orbital molekul, elektron ke-tiganya merupakan orbital antiikat yang melemahkan ikatan dua elektron lainnya sebesar setengah. Molekul oksigen juga dapat dianggap memiliki dua ikatan tiga elektron dan satu ikatan dua elektron yang menjelaskan sifat paramagnetiknya.[5]
Molekul-molekul dengan ikatan elektron gasal biasanya sangat reaktif. Ikatan jenis ini biasanya hanya stabil pada atom-atom yang memiliki elektronegativitas yang sama.[5]
Ikatan aromatik
Pada kebanyakan kasus, lokasi elektron tidak dapat ditandai dengan menggunakan garis (menandai dua elektron) ataupun titik (menandai elektron tungga). Ikatan aromatik yang terjadi pada molekul yang berbentuk cincin datar menunjukkan stabilitas yang lebih.
Pada benzena, 18 elektron ikatan mengikat 6 atom karbon bersama membentuk struktur cincin datar. "Orde" ikatan antara dua atom dapat dikatakan sebagai (18/6)/2=1,5 dan seluruh ikatan pada benzena tersebut adalah identik. Ikatan-ikatan ini dapat pula ditulis sebagai ikatan tunggal dan rangkap yang berselingan, namun hal ini kuranglah tepat mengingat ikatan rangkap dan ikatan tunggal memiliki kekuatan ikatan yang berbeda dan tidak identik.
Ikatan logam
Pada ikatan logam, elektron-elektron ikatan terdelokalisasi pada kekisi (lattice) atom. Berbeda dengan senyawa organik, lokasi elektron yang berikat dan muatannya adalah statik. Oleh karena delokalisai yang menyebabkan elektron-elektron dapat bergerak bebas, senyawa ini memiliki sifat-sifat mirip logam dalam hal konduktivitas, duktilitas, dan kekerasan.
Ikatan antarmolekul
Terdapat empat jenis dasar ikatan yang dapat terbentuk antara dua atau lebih molekul, ion, ataupun atom. Gaya antarmolekul menyebabkan molekul saling menarik atau menolak satu sama lainnya. Seringkali hal ini menentukan sifat-sifat fisik sebuah zat (seperti pada titik leleh).

Dipol permanen ke dipol permanen
Perbedaan elektronegativitas yang bersar antara dua atom yang berikatan dengan kuat menyebabkan terbentuknya dipol (dwikutub). Dipol-dipol ini akan saling tarik-menarik ataupun tolak-menolak.
Ikatan hidrogen
Ikatan hidrogen bisa dikatakan sebagai dipol permanen yang sangat kuat seperti yang dijelaskan di atas. Namun, pada ikatan hidrogen, proton hidrogen berada sangat dekat dengan atom penderma elektron dan mirip dengan ikatan tiga-pusat dua-elektron seperti pada diborana. Ikatan hidrogen menjelaskan titik didih zat cair yang relatif tinggi seperti air, ammonia, dan hidrogen fluorida jika dibandingkan dengan senyawa-senyawa yang lebih berat lainnya pada kolom tabel periodik yang sama.
Dipol seketika ke dipol terimbas (van der Waals)
Dipol seketika ke dipol terimbas, atau gaya van der Waals, adalah ikatan yang paling lemah, namun sering dijumpai di antara semua zat-zat kimia. Misalnya atom helium, pada satu titik waktu, awan elektronnya akan terlihat tidak seimbang dengan salah satu muatan negatif berada di sisi tertentu. Hal ini disebut sebagai dipol seketika (dwikutub seketika). Dipol ini dapat menarik maupun menolak elektron-elektron helium lainnya, dan menyebabkan dipol lainnya. Kedua atom akan seketika saling menarik sebelum muatannya diseimbangkan kembali untuk kemudian berpisah.
Interaksi kation-pi
Interaksi kation-pi terjadi di antara muatan negatif yang terlokalisasi dari elektron-elektron pada orbital π dengan muatan positif.
Elektron pada ikatan kimia
Banyak senyawa-senyawa sederhana yang melibatkan ikatan-ikatan kovalen. Molekul-molekul ini memiliki struktur yang dapat diprediksi dengan menggunakan teori ikatan valensi, dan sifat-sfiat atom yang terlibat dapat dipahami menggunakan konsep bilangan oksidasi. Senyawa lain yang mempunyai struktur ion dapat dipahami dengan menggunakan teori-teori fisika klasik.
Pada kasus ikatan ion, elektron pada umumnya terlokalisasi pada atom tertentu, dan elektron-elektron todal bergerak bebas di antara atom-atom. Setiap atom ditandai dengan muatan listrik keseluruhan untuk membantu pemahaman kita atas konsep distribusi orbital molekul. Gaya antara atom-atom secara garis besar dikarakterisasikan dengan potensial elektrostatik kontinum (malaran) isotropik.
Sebaliknya pada ikatan kovalen, rapatan elektron pada sebuah ikatan tidak ditandai pada atom individual, namun terdelokalisasikan pada MO di antara atom-atom. Teori kombinasi linear orbital yang diterima secara umum membantu menjelaskan struktur orbital dan energi-energinya berdasarkan orbtial-orbital dari atom-atom molekul. Tidak seperti ikatan ion, ikatan kovalen bisa memiliki sifat-sifat anisotropik, dan masing-masing memiliki nama-nama tersendiri seperti ikatan sigma dan ikatan pi.
Atom-atom juga dapat membentuk ikatan-ikatan yang memiliki sifat-sifat antara ikatan ion dan kovalen. Hal ini bisa terjadi karena definisi didasari pada delokalisasi elektron. Elektron-elektron dapat secara parsial terdelokalisasi di antara atom-atom. Ikatan sejenis ini biasanya disebut sebagai ikatan polar kovalen. Lihat pula elektronegativitas.
Oleh akrena itu, elektron-elektron pada orbital molekul dapat dikatakan menjadi terlokalisasi pada atom-atom tertentu atau terdelokalisasi di antara dua atau lebih atom. Jenis ikatan antara dua tom ditentukan dari seberapa besara rapatan elektron tersebut terlokalisasi ataupun terdelokalisasi pada ikatan antar atom.
Aluminium sulfat, dieja aluminium sulfat, aluminium sulfat, atau sulfat aluminium; adalah senyawa kimia dengan rumus Al 2 ( SO 4 ) 3. Aluminium sulfat terutama digunakan sebagai agen flocculating dalam pemurnian air minum [2] [3] dan tanaman air limbah, dan juga dalam pembuatan kertas.

Aluminium sulfat kadang-kadang salah disebut sebagai tawas tapi alums senyawa terkait erat ditandai oleh KAL (SO 4) 2. 12H 2 O Bentuk anhidrat terjadi secara alami sebagai langka mineral millosevichite , ditemukan misalnya dalam lingkungan vulkanik dan pada pembakaran batubara pertambangan pembuangan limbah. Aluminium sulfat jarang, jika pernah, ditemui sebagai garam anhidrat. Ini membentuk beberapa yang berbeda hidrat , dimana hexadecahydrate Al 2 (SO 4) 3 • 16H 2 O dan octadecahydrate Al 2 (SO 4) 3 • 18h 2 O adalah yang paling umum. Para heptadecahydrate, yang rumus dapat ditulis sebagai [Al (H 2 O) 6] 2 (SO 4) 3 • 5H 2 O, terjadi secara alami sebagai mineral alunogen . Isi  [hide]
1 Persiapan
2 Menggunakan
3 Reaksi kimia
4 Referensi
4.1 Catatan kaki
4.2 Notasi
5 Eksternal Link

[ sunting ]
Persiapan

Aluminium sulfat dapat dilakukan dengan menambahkan aluminium hidroksida , Al (OH) 3, dalam asam sulfat , H 2 SO 4:
2 Al (OH) 3 + 3 H 2 SO 4 → Al 2 (SO 4) 3 · 6H 2 O
[ sunting ]
Menggunakan

Aluminium sulfat digunakan dalam pemurnian air dan sebagai tajam dalam pencelupan dan pencetakan tekstil. Dalam pemurnian air, hal itu menyebabkan kotoran untuk mengentalkan yang dihapus sebagai partikel mengendap ke bagian bawah wadah atau lebih mudah disaring. Proses ini disebut koagulasi atau flokulasi .

Ketika dilarutkan dalam jumlah besar air netral atau sedikit basa-, aluminium sulfat menghasilkan endapan gelatin dari aluminium hidroksida , Al (OH) 3. Dalam pencelupan dan pencetakan kain, endapan gelatin membantu pewarna mematuhi serat pakaian dengan render pigmen larut.

Aluminium sulfat kadang-kadang digunakan untuk mengurangi pH tanah kebun, karena menghidrolisis untuk membentuk alumunium hidroksida encer endapan dan asam sulfat solusi. Sebuah contoh dari apa yang mengubah tingkat pH tanah dapat lakukan untuk tanaman terlihat ketika melihat Hydrangea macrophylla. Tukang kebun dapat menambahkan aluminium untuk tanah sulfat untuk mengurangi tingkat pH yang pada gilirannya akan menghasilkan bunga-bunga dari Hydrangea mengubah warna yang berbeda.

Aluminium sulfat adalah bahan aktif dari beberapa antiperspirant , namun mulai tahun 2005 Amerika Serikat Food and Drug Administration tidak lagi diakui sebagai peredam basah.

Aluminium sulfat biasanya ditemukan dalam baking powder , di mana ada kontroversi atas penggunaannya karena kekhawatiran mengenai keselamatan menambahkan aluminium untuk diet.

Dalam industri konstruksi digunakan sebagai agen Waterproofing dan akselerator di beton . Penggunaan lainnya adalah agen berbusa di busa pemadam kebakaran .

Hal ini juga digunakan dalam pensil styptic , dan rasa sakit dari sengatan dan gigitan.

Hal ini juga bisa sangat efektif sebagai molluscicide , membunuh siput Spanyol .
[ sunting ]
Reaksi kimia

Senyawa terurai menjadi γ-alumina dan sulfur trioksida saat dipanaskan antara 580 dan 900 ° C. Ini menggabungkan dengan air membentuk garam terhidrasi berbagai komposisi.

Aluminium sulfat bereaksi dengan natrium bikarbonat yang penstabil busa telah ditambahkan, memproduksi karbon dioksida untuk pemadam kebakaran busa :
Al 2 (SO 4) 3 + 6 NaHCO3 → Na 2 SO 3 4 + 2 Al (OH) 3 + 6 CO 2

Karbon dioksida terperangkap oleh penstabil busa dan menciptakan busa tebal yang akan mengapung di atas bahan bakar hidrokarbon dan menutup akses ke oksigen atmosfer, dibekap api. Busa kimia tidak cocok untuk digunakan pada pelarut polar seperti alkohol, sebagai bahan bakar akan bercampur dengan dan memecah selimut busa. Karbon dioksida yang dihasilkan juga menjabat untuk mendorong busa keluar dari wadah, baik itu alat pemadam kebakaran portabel atau instalasi tetap menggunakan hoselines. Kimia busa dianggap usang di Amerika Serikat dan telah digantikan oleh busa sintetis mekanik, seperti AFFF yang memiliki kehidupan rak lagi, lebih efektif, dan lebih fleksibel, meskipun beberapa negara seperti Jepang dan India terus menggunakannya [ kutipan diperlukan ]